# 北京信普尼科技有限公司



CAT304 系列倾角传感器模块

# 操作手册



# 1产品简介

CAT304 系列倾角传感器模块体积小、功耗低、精度高等特点使其适合应用于很多场景。 例如: 医疗器械、铁道系统、楼宇建筑、军事自动化、地质勘查、通信、热力、水务、电力 等行业。

# 2 产品特性

### 2.1 电气参数

| 特性   | 条件           | 最小  | 典型 | 最大  | 单位 |
|------|--------------|-----|----|-----|----|
| 供电电压 |              | 3.8 |    | 15  | V  |
| 工作电流 | 供电电压 12V,无负载 |     | 8  |     | mA |
| 休眠电流 |              |     | 4  |     | mA |
| 存储温度 |              | -55 |    | 125 | °C |
| 工作温度 |              | -40 |    | 85  | °C |

### 2.2 性能指标

| 特性                                    | 条件              | 最小   | 典型        | 最大     | 单位          |
|---------------------------------------|-----------------|------|-----------|--------|-------------|
| 横滚俯仰                                  |                 |      |           |        |             |
| 横滚范围                                  |                 |      | ±180°     |        | 0           |
| 俯仰范围                                  |                 |      | ±90°      |        | 0           |
| 精度 (δθ <sub>rms</sub> )               |                 |      | 0.05      |        | 0           |
| 分辨率                                   |                 |      | 0.03      |        | 0           |
| 重复性 (δθ <sub>rms</sub> )              |                 |      | 0.03      |        | 0           |
| 数字接口                                  |                 |      |           |        |             |
| 波特率                                   | 用户可选择波特率        | 300  | 38400     | 115200 | Baud        |
| 接口格式                                  |                 |      | RS232/TTL |        |             |
| 上电延迟                                  |                 |      | <360      |        | msec        |
| 休眠延迟                                  |                 |      | <80       |        | msec        |
| 最大采样率                                 |                 |      | 30        |        | samples/sec |
| 绝对最大值                                 |                 |      |           |        |             |
| 供电电压                                  |                 | -0.3 |           | 45     | V           |
| 泊 中                                   | 工作温度            | -40  |           | +85    | °C          |
| / / / / / / / / / / / / / / / / / / / | 存储温度            | -40  |           | +125   | °C          |
| 质量符合性                                 |                 |      |           |        |             |
| 高温                                    | GJB150.3A-2009  |      |           | 符合     |             |
| 低温                                    | GJB150.4A-2009  |      |           | 符合     |             |
| 振动                                    | GJB150.16A-2009 |      |           | 符合     |             |



# 2.3 机械特性

|      | CAT304-XB     | 35 x 43 x 8 | mm |
|------|---------------|-------------|----|
| 尺寸   | CAT304-MB     | 33 x 31 x 8 | mm |
|      | CAT304-T      | 17 x 40 x 8 | mm |
| 重量   |               | ≤10         | g  |
|      | CAT304-XB     | 1.27*9pin   |    |
| 连接器  | CAT304-MB     | 1.27*4pin   |    |
|      | CAT304-T      | 1.27*4pin   |    |
| 安装方式 | 螺钉/支架 水平安装或垂直 |             |    |

# 3 产品安装

### 3.1 电气连接

CAT304-MB 和 CAT304-T RS232 接口和 TTL 的电气连接示意图:



CAT304-XB RS232 接口和 TTL 的电气连接示意图:



在倾角传感器默认安装方式("标准 STDO°",见图 3-3-1)下,俯仰角、横滚角的定义如图 3-3-1 所示,俯仰角测量范围为-90°~90°,水平时为 0°,往上抬头为正,向下低头为负;横滚角测量范围为-180°~180°,水平时为 0°,右倾为正,左倾为负。



图 3-3-1

### 3.3 机械安装

CAT304-MB/XB/T 的校准是相对于定位孔的,因此在系统中应该以定位孔为基准来对齐, 而不能以电路板的边缘为基准。

### 3.4 安装方式选择

CAT304-MB/XB/T 的安装具有极大的灵活性,可以安装在不同的位置上。具体的安装位置 名称见下图,默认的安装方式是"STD0"。

注意:下面图中的电路板是示意图,并不是真实的 CAT304-MB/XB/T 电路板。

XIPN) SENSORS



图 3-4-1

# 4 连接读数

传感器读数方式:1.串口调试助手读数。

2.配套用户上位机软件读数。

### 4.1 串口调试助手发命令读数

给传感器供电后,指示灯闪烁,连接计算机串口,传感器不主动输出数据,需发送查询 预设输出数据或开始连续输出命令,才会有姿态数据输出。

| 查询预设输出数据 | 00 05 04 BF 71 |
|----------|----------------|
| 开始连续输出   | 00 05 15 BD 61 |
|          | 表 4-1-1        |

出厂前默认波特率: 38400bps, 命令和输出都是二进制格式 (HEX)。

输出姿态数据举例: 00 10 05 02 18 BF B3 26 21 19 BE A1 F4 80 42 40。这包数据表示输出

了 2 个姿态数据,分别是 18 (俯仰角的标识符)、19 (横滚角的标识符),跟在标识符后面的 就是对应的姿态数据。

用串口调试工具发送上表中的任何一条命令都可以输出姿态数据,输出数据的解析参考 通讯协议部分的**查询预设输出数据的应答**命令。

### 4.2 配套的上位机软件读数

操作步骤如下:

- (1) 供电(5V),传感器红灯闪烁。
- (2) 连接传感器和计算机串口。
- (3) 运行"AT304-XB(MB T)用户软件.exe"软件,界面如图 4-2-1。

| 🥪 XPN AT304-XB(MB/T)用户软件 V1.0 |        |      |      |      |
|-------------------------------|--------|------|------|------|
| X®N                           | ب<br>ب | ¥    |      |      |
| <b>连接</b> 配置                  | 校准 测试  | 零偏修正 | 数据记录 | 系统日志 |
|                               |        |      |      |      |

图 4-2-1

- (4) 选择正确的串口号。
- (5) 点击"连接"按钮,连接成功后,界面如图 4-2-2 所示。"连接"按钮旁灯变绿, 表示连接成功,红色表示连接异常。

| 📦 XPN AT304-XB(MB) | /T)用户软件 V1.0                                             | 1.8                                    | 1.00.1.0                                        |           | 100 1 100 |      |
|--------------------|----------------------------------------------------------|----------------------------------------|-------------------------------------------------|-----------|-----------|------|
| XPN                | 段备类型: AT30<br>固件版本号: 1208<br>序列号: 220815002<br>℃A版本: R04 |                                        | ●<br>〔关闭<br>休                                   | 串口<br>III |           |      |
| 连接                 | 配置                                                       | 校准                                     | 测试                                              | 零偏修正      | 数据记录      | 系统日志 |
|                    |                                                          | - 计算机设置<br>串口边<br>波特等<br>- 模块波特等<br>波特 | g<br>结择<br>「5<br>38400 ▼<br>審设置<br>第<br>38400 ▼ |           |           |      |

5 / 29 北京信普尼科技有限公司 <u>www.xpnrobot.com</u> 010-80707547



#### 图-4-2-2

(6) 按照图 4-2-3 所示配置。点击"配置并保存",界面显示"设置完成"。

| 🛞 XPN AT304-XB(MB/T)                                                                    | 月户软件 V1.0          |                                                                                                       | X                                                                                      |
|-----------------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| XPN                                                                                     | 设备类型: AT30         |                                                                                                       |                                                                                        |
| 连接                                                                                      | 配置 校准 测试 零偏修正      | E 数据记录                                                                                                | 系统日志                                                                                   |
| 安装方式<br>安装方式 □ 510 0°<br>大小滿设置<br>○ 大端 ○ 小嶺<br>一輸出单位<br>○ 度 ○ 密位<br>校准輸出设置<br>○ 輸出 ○ 不輔 | 按照文 <b>际安装位置选择</b> | 校准设置<br>「自动采祥<br>采祥点数 <sup>118</sup><br>・加速度球校准<br>・加速度对存校准<br>新設置<br>加速度系数编号 [0<br>默认值 查询配置值<br>设置完成 | ▼<br>■<br>■<br>二<br>単<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二 |

图 4-2-3

(7) 在"测试"页面,点击"输出数据"按钮,就可以观察到输出的姿态数据。界面见图 4-2-4:

| 📦 XPN AT304-XB(MB/T)用                  | 户软件 V1.0                                                  |            |    |                 |                 |      |      |
|----------------------------------------|-----------------------------------------------------------|------------|----|-----------------|-----------------|------|------|
|                                        | 设备类型: AT30<br>31件版本号: 1208<br>客列号: 220815002<br>CA版本: R04 |            | •  | 关闭串口<br>休眠      |                 |      |      |
|                                        | 配置                                                        | 校准         | 测试 | 7 零(            | 扁修正             | 数据记录 | 系统日志 |
| <sup>当前读数</sup><br>俯仰角<br>横滚角          | -4. 17<br>6. 64                                           |            |    | - 輸出设置          | <b>谕</b> 出模式: 1 | 重調輸出 |      |
|                                        | 1                                                         | C INT MICT |    | 旦 山<br>(<br>采样) | 回ME:0.00s       |      |      |
| —————————————————————————————————————— | 功耗查询数据                                                    | □ 低功耗读数模式  | đ  |                 |                 |      |      |

图 4-2-4

### 4.3 连接异常处理

1. 连接失败

处理办法:(1)请检查计算机串口是否插好。(2)确认串口号正确。

2. 上位机显示异常,如下图:



|      | Mercul Inc. | 1.08 |  |
|------|-------------|------|--|
|      | ● 美闭串口      |      |  |
| XIIN | 唤醒          |      |  |
|      |             |      |  |

图 4-3-1

处理办法:关闭串口重新连接。

# 5 使用说明

给传感器供电后,连接计算机串口,如果上次断电前设置的是连续输出模式,倾角传感器会主动输出数据,如果设置的是单次输出模式,就需要用户发送单次输出数据或者连续输出数据的命令后传感器采会输出姿态数据。

#### 串口调试助手发命令读数

| 单次输出数据  | AA AA 04 02 A0 A6 |  |  |
|---------|-------------------|--|--|
| 连续输出数据  | AA AA 04 02 A1 A7 |  |  |
| 表 5-1-1 |                   |  |  |

出厂前默认波特率:9600bps,命令和输出都是十六进制格式(HEX)。

#### 配套的上位机软件读数

操作步骤如下:

- (1) 供电(典型值 12V)。
- (2) 连接传感器和计算机串口。
- (3) 运行"CAT203 用户软件.exe"软件,界面如图 5-1-1。



图 5-1-1

(4) 选择正确的串口号和波特率值。



(5) 点击"打开串口"按钮,成功后串口状态指示由黑色变为绿色,同时界面显示传感器输出的角度值,角度曲线,数据分析值等,界面如图 5-1-2。



图 5-1-2

# 6 通讯协议

CAT304 系列倾角传感器所采用的通讯协议遵守国际电气协议 IEEE 标准格式 ANSI/IEEE Std754-1985,该标准规定了计算机程序设计环境中的二进制和十进制的浮点数转换、算术格式及方法。

CAT304 系列倾角传感器采用二进制通讯协议,串口配置如下:

| 数值 |
|----|
| 8  |
| 1  |
| 1  |
| 无  |
|    |

表 7-1-1

### 6.1 数据帧结构



说明:

(1) 帧长度是一帧数据包的字节数,包括帧长度、协议数据单元和 CRC-16 校验。

(2) CRC-16 校验计算从帧长度开始到协议数据单元的最后一个字节。

(3) 帧长度和 CRC-16 校验是固定是大端模式,协议数据单元的多字节数据可以设置大小端。

### 6.2 数据类型

| 符号      | 说明                                     |
|---------|----------------------------------------|
| Float64 | 64bit 浮点数据(IEEE Std 754- <i>1985</i> ) |
| Float32 | 32bit 浮点数据(IEEE Std 754- <i>1985</i> ) |
| Sint32  | 32bit 有符号整型数据                          |
| Sint16  | 16bit 有符号整型数据                          |
| Sint8   | 8bit 有符号整型数据                           |
| Uint32  | 32bit 无符号整型数据                          |
| Uint16  | 16bit 无符号整型数据                          |
| Uint8   | 8bit 无符号整型数据                           |
| Boolean | 布尔变量,值只能是1或者0                          |

表 7-2-1

# 6.3 命令详解

| 命令字     | 英文命令符                     | 中文命令符                                                                                                                               | 按钮名称            |
|---------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 命令字 1~4 | 49 和 PNI 的 TCM XB/MB 完全兼容 | 。                                                                                                                                   |                 |
| 1       | kGetModInfo               | 查询类型及固件版本号                                                                                                                          | "连接"            |
| 2       | kGetModInfoResp           | 查询类型及固件版本号成功的应答                                                                                                                     |                 |
| 3       | kSetDataComponents        | 设置输出数据项目                                                                                                                            |                 |
| 4       | kGetData                  | 查询预设输出数据                                                                                                                            |                 |
| 5       | kGetDataResp              | 预设输出数据的应答                                                                                                                           |                 |
| 6       | kSetConfig                | 基础配置                                                                                                                                |                 |
| 7       | kGetConfig                | 查询基础配置                                                                                                                              |                 |
| 8       | kGetConfigResp            | 查询配置成功的应答                                                                                                                           |                 |
| 9       | kSave                     | 保存                                                                                                                                  | "保存"            |
| 10      | kStartCal                 | 开始校准                                                                                                                                | "开始校准"          |
| 11      | kStopCal                  | 终止校准                                                                                                                                | "终止校准"          |
| 12      | kSetFIRFilters            | 设置滤波系数                                                                                                                              |                 |
| 13      | kGetFIRFilters            | 查询滤波系数                                                                                                                              |                 |
| 14      | kGetFIRFilters Resp       | 查询滤波系数的应答                                                                                                                           |                 |
| 15      | kPowerDown                | 休眠                                                                                                                                  | "休眠"            |
| 16      | kSaveDone                 | 保存结果的应答                                                                                                                             |                 |
| 17      | kUserCalSampCount         | 采样点序号                                                                                                                               |                 |
| 18      | kCalScore                 | 校准结果评分                                                                                                                              |                 |
| 19      | kSetConfigDone            | 基础配置成功的应答                                                                                                                           |                 |
| 20      | kSetFIRFiltersDone        | 设置滤波系数成功的应答                                                                                                                         |                 |
| 21      | kStartContinuousMode      | 启动连续输出                                                                                                                              |                 |
| 22      | kStopContinuousMode       | 停止连续输出                                                                                                                              | "停止输出"          |
| 23      | kPowerUpDone              | 唤醒休眠成功的应答                                                                                                                           |                 |
| 24      | kSetAcqParams             | 设置连续输出间隔                                                                                                                            |                 |
| 25      | kGetAcqParams             | 查询连续输出间隔                                                                                                                            |                 |
| 26      | kSetAcqParamsDone         | 设置连续输出间隔成功的应答                                                                                                                       |                 |
| 27      | kGetAcqParamsResp         | 查询连续输出间隔成功的应答                                                                                                                       |                 |
| 28      | kPowerDownDone            | 休眠成功的应答                                                                                                                             |                 |
| 31      | kTakeUserCalSample        | 记录采样点                                                                                                                               | "记录采样点"         |
| 36      | kFactoryAccelCoeff        | 恢复加速度系数的出厂配置                                                                                                                        | "恢复加速度出厂<br>配置" |
| 37      | kFactoryAccelCoeffDone    | 恢复加速度系数出厂配置的应答                                                                                                                      |                 |
| 46      | kSetSyncMode              | 设置低功耗读数模式                                                                                                                           | "低功耗读数模<br>式"   |
| 47      | kSetSyncModeResp          | 设置低功耗读数的应答                                                                                                                          |                 |
| 49      | kSyncRead                 | 低功耗读数模式下查询数据                                                                                                                        | "低功耗查询数<br>据"   |
| 80      | KCaliHull_2               | 设置模块安装误差修正数据                                                                                                                        | "安装误差修正"        |
| 81      | KCaliHull_2Resp           | 设置模块安装误差修正数据成功的应<br><u><u></u> <u></u> </u> |                 |
| 54      | kClearHull                |                                                                                                                                     | "清除安装误差修        |
|         |                           |                                                                                                                                     |                 |

CAT304 系列倾角传感器模块

|    |                                 |                       | 正"       |
|----|---------------------------------|-----------------------|----------|
| 55 | kClearHullResp                  | 清除模块安装误差修正数据成功的应<br>答 |          |
|    | Frame ID64~ID78 是               | 信普尼独有的校准命令            |          |
| 64 | KStartCalAlignment              | 开始加速度对齐校准             | "开始对齐校准" |
| 65 | KStartCalAlignmentResp          | 开始加速度对齐校准成功的应答        |          |
| 66 | kTakeUserCalAlignmentSa<br>mple | 记录加速度对齐校准数据           |          |
| 67 | kTakeSampleOk                   | 记录加速度对齐校准数据成功的应答      |          |
| 68 | kTakeSampleFail                 | 记录加速度对齐校准数据失败的应答      |          |
| 69 | kCalcCoeff                      | 计算加速度对齐校准系数           | "计算对齐系数" |
| 70 | kCalcCoeffOk                    | 计算加速度对齐校准系数成功的应答      |          |
| 71 | kCalcCoeffFail                  | 计算加速度对齐校准系数失败的应答      |          |
| 72 | KStopCalAlignment               | 终止加速度对齐校准             | "终止对齐校准" |
| 73 | KStopCalAlignmentResp           | 终止加速度对齐校准成功的应答        |          |
| 74 | KClearCalAlignmentCoeff         | 清除加速度对齐系数             | "清除对齐系数" |
| 75 | KClearCalAlignmentCoeff<br>Resp | 清除加速度对齐系数成功的应答        |          |

#### 表 7-3-1

没有数据的命令,列出完整帧格式不进行解释。有数据的命令,列出数据区的格式,根据情况进行解释、说明或举例。

1 查询类型及固件版本号 (KGetModInfo 命令字=1):

| ←帧长度 →                            | ←命令字→    | <b>←CRC-16</b> 校验 <b>→</b>        |
|-----------------------------------|----------|-----------------------------------|
| 0005                              | 01       | EFD4                              |
| $\leftarrow$ UInt16 $\rightarrow$ | ← UInt8→ | $\leftarrow$ UInt16 $\rightarrow$ |

2 查询类型及固件版本号成功的应答(kGetModInfoResp 命令字=2)

倾角传感器类型和固件版本号是 4 字节的字符类型。由于模块类型只有 4 字节,因此将用 AT30 表示 CAT304-MB/XB/T。

| $\leftarrow$                      | 数据 →                              |
|-----------------------------------|-----------------------------------|
| 类型                                | 版本号                               |
| $\leftarrow$ UInt32 $\rightarrow$ | $\leftarrow$ UInt32 $\rightarrow$ |

3 设置输出数据项目(kSetDataComponents 命令字=3)

| ÷                                | 数据                               |         | $\rightarrow$                    |         |
|----------------------------------|----------------------------------|---------|----------------------------------|---------|
| 项目个数 N                           | 项目号1                             | 项目号 2   | 项目号 3                            | 项目号N    |
| $\leftarrow$ UInt8 $\rightarrow$ | $\leftarrow$ UInt8 $\rightarrow$ | ←UInt8→ | $\leftarrow$ UInt8 $\rightarrow$ | ←UInt8→ |

项目号(十进制)如下表:

| 项目名称 | 项目号 | 数据类型    | 数据单位   | 数据值     |
|------|-----|---------|--------|---------|
| 俯仰角  | 24  | Float32 | 度      | ±90.0°  |
| 横滚角  | 25  | Float32 | 度      | ±180.0° |
| 温度   | 7   | Float32 | 摄氏度(℃) |         |

XIPN) SENSORS

CAT304 系列倾角传感器模块

| X轴加速度 | 21 | Float32 | G | ±1.0 |
|-------|----|---------|---|------|
| Y轴加速度 | 22 | Float32 | G | ±1.0 |
| Z轴加速度 | 23 | Float32 | G | ±1.0 |

表 7-3-2

举例: 00 08 03 02 18 19 FE 53 (配置模块输出俯仰角、横滚角)。

说明: X、Y、Z 轴加速度的单位 G 采用的是国际通用单位 G0=9.80665 米/秒^2。

4 查询预设输出数据(kGetData 命令字=4)

| ←帧长度→                             | ←命令字→    | <b>←CRC-16</b> 校验→                |
|-----------------------------------|----------|-----------------------------------|
| 0005                              | 04       | BF71                              |
| $\leftarrow$ UInt16 $\rightarrow$ | ← UInt8→ | $\leftarrow$ UInt16 $\rightarrow$ |

5 查询预设输出数据的应答(kGetDataResp 命令字=5)

| ÷                                                                      |         |              | 数据      |              |         | $\rightarrow$                       |
|------------------------------------------------------------------------|---------|--------------|---------|--------------|---------|-------------------------------------|
| 项目个数<br>N                                                              | 项目号1    | 项目号1的<br>值   | 项目号 2   | 项目号 2 的<br>值 | 项目号 3   | 项目号3的<br>值                          |
| $\begin{array}{c} \leftarrow  \text{UInt8} \\ \rightarrow \end{array}$ | ←UInt8→ | ←依标识值<br>定义→ | ←UInt8→ | ←依标识值<br>定义→ | ←UInt8→ | <ul><li>◆依标识</li><li>值定义→</li></ul> |

依标识值定义指的是数据类型由标识号对应的数据类型确定。

举例: 00 10 05 02 18 3E D3 3B AD 19 BF 8B 1B C0 E6 20 这。帧数据表示输出了 2 个数据: 18 (俯仰角 0.41) 19 (横滚角-1.08)。

6 基础配置(kSetConfig 命令字=6)

| ← 数       | 据 →       |
|-----------|-----------|
| 基础配置项目号   | 配置值       |
| ← UInt8 → | ← 依配置值定义→ |

| 项目名称  | 基础配置<br>项目号 | 数据类型     | 配置值            | 数据默认<br>值 |
|-------|-------------|----------|----------------|-----------|
| 大小端设置 | 6           | Boolean  | 1=大端;<br>0=小端。 | True      |
|       |             |          | 1 = STD 0°     |           |
|       |             |          | 2 = X UP       |           |
|       |             | 10 UInt8 | 3 = Y UP       |           |
|       |             |          | 4 = STD 90°    |           |
|       |             |          | 5= STD 180°    |           |
| 它壮士十  | 10          |          | 6= STD 270°    | 1         |
| 女衣刀氏  | 10          |          | 7 = Z DOWN 0°  | 1         |
|       |             |          | 8 = X UP 90°   |           |
|       |             |          | 9 = X UP 180°  |           |
|       |             |          | 10 = X UP 270° |           |
|       |             |          | 11 = Y UP 90°  |           |
|       |             |          | 12 = Y UP 180° |           |



|         |     |          | 13 = Y UP 270°   |        |
|---------|-----|----------|------------------|--------|
|         |     |          | 14 = Z DOWN 90°  |        |
|         |     |          | 15 = Z DOWN 180° |        |
|         |     |          | 16 = Z DOWN 270° |        |
| 采样点数    | 12  | UInt32   | 12-32            | 18     |
| 白井亚样    | 12  | Booloop  | 1=自动采样;          | Falco  |
| 日初木件    | 15  | BOOlean  | 0=手动采样。          | raise  |
|         |     |          | 0 – 300          |        |
|         |     |          | 1-600            |        |
|         |     |          | 2 – 1200         |        |
|         |     |          | 3 - 1800         |        |
|         |     |          | 4 – 2400         |        |
|         |     |          | 5 – 3600         |        |
|         |     |          | 6 – 4800         |        |
| 波特率     | 14  | UInt8    | 7 – 7200         | 12     |
|         |     |          | 8 – 9600         |        |
|         |     |          | 9 - 14400        |        |
|         |     |          | 10 – 19200       |        |
|         |     |          | 11 – 28800       |        |
|         |     |          | 12 – 38400       |        |
|         |     |          | 13 – 57600       |        |
|         |     |          | 14 - 115200      |        |
| 输出单位    | 15  | Boolean  | 1=密位;            | False  |
| 制山十区    | 1.5 | DUDICALI | 0=度。             | 1 0130 |
| 校准输出设置  | 16  | Boolean  | 1=输出;            | True   |
|         | -   |          | 0=不输出。           |        |
| 加速度系数编号 | 19  | Uint32   | 0-2              | 0      |

表 7-3-3

举例:

00 07 06 0D 01 85 F0 (校准时自动采样)

00 0A 06 0C 00 00 00 20 D1 E6 (采样点数 32)

00 07 06 0A 01 1C 67 (参考安装面为 STD 0°)

00 07 06 0E 0C 01 0E (38400 波特率)

00 07 06 06 01 59 0A (大端模式)

7 查询基础配置(kGetConfig 命令字=7)

| $\leftarrow$ | 数据    | $\rightarrow$ |  |
|--------------|-------|---------------|--|
| 基础           | 配置项目  | 1号            |  |
| ÷            | UInt8 | $\rightarrow$ |  |

举例: 00 06 07 06 4B F1 (查询数据大小端模式)

8 查询配置成功的应答(kGetConfigResp 命令字=8)

| 304 | 系列倾角 | 目传感器惧状        |  |
|-----|------|---------------|--|
|     | 数据   | $\rightarrow$ |  |
|     |      | 配置值           |  |

 基础配置项目号
 配置值

 ← UInt8 →
 ← 依配置值定义→

举例: 00 07 08 06 01 42 0B (数据为大端模式)

#### **9 保存**(kSave 命令字=9)

这个命令将配置的值和用户校准的系数保存在非易失性内存中。

 $\leftarrow$ 

| ←帧长度→                             | ←命令字→    | <b>←CRC-16</b> 校验→                |  |
|-----------------------------------|----------|-----------------------------------|--|
| 0005                              | 06       | 6EDC                              |  |
| $\leftarrow$ UInt16 $\rightarrow$ | ← UInt8→ | $\leftarrow$ UInt16 $\rightarrow$ |  |

**10 开始校准**(kStartCal 命令字=10)

| $\leftarrow$ | 数据     | $\rightarrow$ |
|--------------|--------|---------------|
|              | 校准模式   |               |
| $\leftarrow$ | UInt32 | $\rightarrow$ |

| 校准模式   | 100    |
|--------|--------|
| 校准模式说明 | 加速度球校准 |

举例: 00 09 0A 00 00 00 64 22 6E。

11 终止校准(kStopCal 命令字 =11)

这个命令是针对开始校准(kStartCal 命令字=10)命令的。

| ←帧长度→                             | ←命令字→                            | <b>←CRC-16</b> 校验→                |  |
|-----------------------------------|----------------------------------|-----------------------------------|--|
| 0005                              | OB                               | 4E9E                              |  |
| $\leftarrow$ UInt16 $\rightarrow$ | $\leftarrow$ UInt8 $\rightarrow$ | $\leftarrow$ UInt16 $\rightarrow$ |  |

12 设置滤波系数(kSetFIRFilters 命令字=12)

| ÷       | -       |         | 数据        |           |           | $\rightarrow$ |
|---------|---------|---------|-----------|-----------|-----------|---------------|
| 3       | 1       | 抽头个数 N  | 抽头1的值     | 抽头2的值     | 抽头3的值     | 抽头N的值         |
| ←UInt8→ | ←UInt8→ | ←UInt8→ | ←Float64→ | ←Float64→ | ←Float64→ | ←Float64→     |

推荐的抽头数的值见下图 4-3-2:

| Count | 4-Tap Filter        | 8-Tap Filter        | 16-Tap Filter       | 32-Tap Filter       |
|-------|---------------------|---------------------|---------------------|---------------------|
| 1     | 04.6708657655334e-2 | 01.9875512449729e-2 | 07.9724971069144e-3 | 01.4823725958818e-3 |
| 2     | 04.5329134234467e-1 | 06.4500864832660e-2 | 01.2710056429342e-2 | 02.0737124095482e-3 |
| 3     | 04.5329134234467e-1 | 01.6637325898141e-1 | 02.5971390034516e-2 | 03.2757326624196e-3 |
| 4     | 04.6708657655334e-2 | 02.4925036373620e-1 | 04.6451949792704e-2 | 05.3097803863757e-3 |
| 5     |                     | 02.4925036373620e-1 | 07.1024151197772e-2 | 08.3414139286254e-3 |
| 6     |                     | 01.6637325898141e-1 | 09.5354386848804e-2 | 01.2456836057785e-2 |
| 7     |                     | 06.4500864832660e-2 | 01.1484431942626e-1 | 01.7646051430536e-2 |
| 8     |                     | 01.9875512449729e-2 | 01.2567124916369e-1 | 02.3794805168613e-2 |
| 9     |                     |                     | 01.2567124916369e-1 | 03.0686505921968e-2 |
| 10    |                     |                     | 01.1484431942626e-1 | 03.8014333463472e-2 |
| 11    |                     |                     | 09.5354386848804e-2 | 04.5402682509802e-2 |
| 12    |                     |                     | 07.1024151197772e-2 | 05.2436112653103e-2 |
| 13    |                     |                     | 04.6451949792704e-2 | 05.8693165018301e-2 |
| 14    |                     |                     | 02.5971390034516e-2 | 06.3781858267530e-2 |
| 15    |                     |                     | 01.2710056429342e-2 | 06.7373451424187e-2 |
| 16    |                     |                     | 07.9724971069144e-3 | 06.9231186101853e-2 |
| 17    |                     |                     |                     | 06.9231186101853e-2 |
| 18    |                     |                     |                     | 06.7373451424187e-2 |
| 19    |                     |                     |                     | 06.3781858267530e-2 |
| 20    |                     |                     |                     | 05.8693165018301e-2 |
| 21    |                     |                     |                     | 05.2436112653103e-2 |
| 22    |                     |                     |                     | 04.5402682509802e-2 |
| 23    |                     |                     |                     | 03.8014333463472e-2 |
| 24    |                     |                     |                     | 03.0686505921968e-2 |
| 25    |                     |                     |                     | 02.3794805168613e-2 |
| 26    |                     |                     |                     | 01.7646051430536e-2 |
| 27    |                     |                     |                     | 01.2456836057785e-2 |
| 28    |                     |                     |                     | 08.3414139286254e-3 |
| 29    |                     |                     |                     | 05.3097803863757e-3 |
| 30    |                     |                     |                     | 03.2757326624196e-3 |
| 31    |                     |                     |                     | 02.0737124095482e-3 |
| 32    |                     |                     |                     | 01.4823725958818e-3 |

#### 图 7-3-1

例如, 滤波的抽头个数设置为 4, 由图 4-3-2 可以确定 4 个抽头数的值分别是: 04.6708 657655334e-2、04.5329134234467e-1、04.5329134234467e-1、04.6708657655334e-2。

举例: 00 28 0C 03 01 04 3F A7 EA 32 7A 23 B2 49 3F DD 02 B9 B0 BB 89 FF 3F DD 02 B9 B0 BB 89 FF 3F DD 02 B9 B0 BB 89 FF 3F A7 EA 32 7A 23 B2 49 04 92 (设置 taps=4)

13 查询滤波系数(kGetFIRFilters 命令字=13)

| ← 数                              | 据 →                              |
|----------------------------------|----------------------------------|
| 3                                | 1                                |
| $\leftarrow$ UInt8 $\rightarrow$ | $\leftarrow$ UInt8 $\rightarrow$ |

14 查询滤波系数的应答(kGetFIRFiltersResp 命令字=14)

|                                  |         | $\leftarrow$ | 数据                                 | $\rightarrow$                      |                                    |                                    |
|----------------------------------|---------|--------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|
| 3                                | 1       | 抽头个数 N       | 抽头1的值                              | 抽头2的值                              | 抽头3的值                              | 抽头N的值                              |
| $\leftarrow$ UInt8 $\rightarrow$ | ←UInt8→ | ←UInt8→      | $\leftarrow$ Float64 $\rightarrow$ | $\leftarrow$ Float64 $\rightarrow$ | $\leftarrow$ Float64 $\rightarrow$ | $\leftarrow$ Float64 $\rightarrow$ |

#### 15 休眠 (kPowerDown 命令字=15)

| ←帧长度→                             | ←命令字→                            | <b>←CRC-16</b> 校验→                |
|-----------------------------------|----------------------------------|-----------------------------------|
| 0005                              | OF                               | 0E1A                              |
| $\leftarrow$ UInt16 $\rightarrow$ | $\leftarrow$ UInt8 $\rightarrow$ | $\leftarrow$ UInt16 $\rightarrow$ |

唤醒:发送任意数据可将倾角传感器唤醒,推荐发送 OxFF。

#### 16 保存结果的应答(kSaveDone 命令字=16)

错误代码=0000h 表示成功, 错误代码=0001 h 表示失败。

| $\leftarrow$ | 数据     | $\rightarrow$ |
|--------------|--------|---------------|
|              | 错误代码   |               |
| ←            | UInt16 | $\leftarrow$  |

17 采样点序号(kUserCalSampCount 命令字=17)

范围为 1 到 32。

**18 校准结果评分**(kCalScore 命令字=18)

|           |           | ← 数据      | -         | >         |           |
|-----------|-----------|-----------|-----------|-----------|-----------|
| 保留        | 保留        | 加速度校准评分   | 保留        | 保留        | 保留        |
| ←Float32→ | ←Float32→ | ←Float32→ | ←Float32→ | ←Float32→ | ←Float32→ |

19 配置成功的应答(kSetConfigDone 命令字=19)

|             | ←帧长度→    | ←命令字→                            | <b>←CRC-16</b> 校验→ |
|-------------|----------|----------------------------------|--------------------|
|             | 0005     | 13                               | DDA7               |
|             | ←UInt16→ | $\leftarrow$ UInt8 $\rightarrow$ | ←UInt16→           |
| 20 设置滤波系数成功 | i的应答(kSe | etFIRFiltersD                    | one 命令字=20         |
|             | ←帧长度→    | ←命令字→                            | <b>←CRC-16</b> 校验→ |
|             | 0005     | 14                               | AD40               |
|             |          |                                  |                    |

| $\leftarrow$ UInt16 $\rightarrow$ | $\leftarrow$ UInt8 $\rightarrow$ | $\leftarrow$ | UInt16 | $\rightarrow$ |
|-----------------------------------|----------------------------------|--------------|--------|---------------|
|                                   |                                  | 1            |        |               |

**21 启动连续输出**(kStartContinuousMode 命令字=21)

模块重启后,开始连续输出失效,需要重新发送该命令进行设置。

| ←帧长度→                             | ←命令字→    | <b>←CRC-16</b> 校验→                |
|-----------------------------------|----------|-----------------------------------|
| 0005                              | 15       | BD61                              |
| $\leftarrow$ UInt16 $\rightarrow$ | ← UInt8→ | $\leftarrow$ UInt16 $\rightarrow$ |

**22** 停止连续输出(kStopContinuousMode 命令字=22)

| ←帧长度→                             | ←命令字→    | <b>←CRC-16</b> 校验→ |
|-----------------------------------|----------|--------------------|
| 0005                              | 16       | 8D02               |
| $\leftarrow$ UInt16 $\rightarrow$ | ← UInt8→ | ← UInt16 →         |

**16 / 29** 北京信普尼科技有限公司 <u>www.xpnrobot.com</u> 010-80707547

#### 23 唤醒休眠成功的应答(kPowerUpDone 命令字=23)

| ←帧长度→                             | ←命令字→    | <b>←CRC-16</b> 校验 <b>→</b> |
|-----------------------------------|----------|----------------------------|
| 0005                              | 17       | 9D23                       |
| $\leftarrow$ UInt16 $\rightarrow$ | ← UInt8→ | ← UInt16 →                 |

24 设置连续输出间隔(kSetAcqParams 命令字=24)

| $\leftarrow$                     | 数据                               |           | $\rightarrow$ |
|----------------------------------|----------------------------------|-----------|---------------|
| 输出方式                             | 保留                               | 采样间隔      | 输出间隔          |
| $\leftarrow$ UInt8 $\rightarrow$ | $\leftarrow$ UInt8 $\rightarrow$ | ←Float32→ | ←Float32→     |

输出方式: false 是查询输出; Ture 是连续输出。

采样间隔:设置为0。

输出间隔:最小间隔是 0.033s,即输出频率为 30Hz。

举例: 00 0F 18 00 00 00 00 00 00 3F 00 00 00 1C 57(连续输出,保留,传感器采样间隔为 0s,连续输出间隔是 0.5s)

25 查询连续输出间隔(kGetAcqParams 命令字=25)

| ←帧长度→                             | ←命令字→   | <b>←CRC-16</b> 校验 <b>→</b>        |
|-----------------------------------|---------|-----------------------------------|
| 0005                              | 19      | 7CED                              |
| $\leftarrow$ UInt16 $\rightarrow$ | ←UInt8→ | $\leftarrow$ UInt16 $\rightarrow$ |

26 设置连续输出间隔成功的应答(kSetAcqParamsDone 命令字 =26)

| ←帧长度→                             | ←命令字→    | <b>←CRC-16</b> 校验→                |
|-----------------------------------|----------|-----------------------------------|
| 0005                              | 1A       | 4C8E                              |
| $\leftarrow$ UInt16 $\rightarrow$ | ← UInt8→ | $\leftarrow$ UInt16 $\rightarrow$ |

27 查询连续输出间隔成功的应答(kGetAcqParamsResp 命令字=27)

| $\leftarrow$ |         | 数据                                 | $\rightarrow$                      |
|--------------|---------|------------------------------------|------------------------------------|
| 输出方式         | 保留      | 采样间隔                               | 输出间隔                               |
| ←UInt8→      | ←UInt8→ | $\leftarrow$ Float32 $\rightarrow$ | $\leftarrow$ Float32 $\rightarrow$ |

举例: 00 0F 1B 00 00 00 00 00 00 3F 00 00 00 64 AD(输出间隔 0.5s)

**28 休眠成功的应答**(kPowerDownDone 命令字=28)

| ←帧长度→      | ←命令字→    | <b>←CRC-16</b> 校验 <b>→</b> |
|------------|----------|----------------------------|
| 0005       | 1C       | 2C48                       |
| ← UInt16 → | ← UInt8→ | ← UInt16 →                 |

31 记录采样点(kCalSample 命令字=31)

| ←帧长度→                             | ←命令字→                            | <b>←CRC-16</b> 校验→                |
|-----------------------------------|----------------------------------|-----------------------------------|
| 0005                              | 1F                               | 1C2B                              |
| $\leftarrow$ UInt16 $\rightarrow$ | $\leftarrow$ UInt8 $\rightarrow$ | $\leftarrow$ UInt16 $\rightarrow$ |

#### 36 恢复加速度系数的出厂配置(FactoryAccelCoeff 命令字=36)

| ←帧长度→                             | ←命令字→    | <b>←CRC-16</b> 校验→                |
|-----------------------------------|----------|-----------------------------------|
| 0005                              | 24       | 9B13                              |
| $\leftarrow$ UInt16 $\rightarrow$ | ← UInt8→ | $\leftarrow$ UInt16 $\rightarrow$ |

37 恢复加速度系数出厂配置的应答(kFactoryAccelCoeffDone 命令字=37)

| ←帧长度→                             | ←命令字→                            | <b>←CRC-16</b> 校验→ |  |
|-----------------------------------|----------------------------------|--------------------|--|
| 0005                              | 25                               | 8B32               |  |
| $\leftarrow$ UInt16 $\rightarrow$ | $\leftarrow$ UInt8 $\rightarrow$ | ← UInt16 →         |  |

46 设置低功耗读数模式(kSetSyncMode 命令字=46)

工作模式代码设置为0代表正常模式,设置为100代表低功耗读数模式。

| $\leftarrow$ | 数据    | $\rightarrow$ |
|--------------|-------|---------------|
| 工作模式代码       |       |               |
| ←            | UInt8 | $\rightarrow$ |

47 设置低功耗读数模式的应答(kSetSyncModeResp 命令字=47)

| $\leftarrow$ | 数据    | $\rightarrow$ |
|--------------|-------|---------------|
| I1           | 乍模式什  | 亡码            |
| $\leftarrow$ | UInt8 | $\rightarrow$ |

49 低功耗读数模式下查询数据(kSyncRead 命令字=49)

| ←帧长度→                             | ←命令字→                            | <b>←CRC-16</b> 校验→                |  |
|-----------------------------------|----------------------------------|-----------------------------------|--|
| 0005                              | 31                               | D987                              |  |
| $\leftarrow$ UInt16 $\rightarrow$ | $\leftarrow$ UInt8 $\rightarrow$ | $\leftarrow$ UInt16 $\rightarrow$ |  |

80 设置模块安装误差修正数据(kCaliHull\_2 命令字 =80)

| ←帧长度→                             | ←命令字→                            | <b>←CRC-16</b> 校验 <b>→</b>        |  |
|-----------------------------------|----------------------------------|-----------------------------------|--|
| 0005                              | 50                               | A500                              |  |
| $\leftarrow$ UInt16 $\rightarrow$ | $\leftarrow$ UInt8 $\rightarrow$ | $\leftarrow$ UInt16 $\rightarrow$ |  |

81 设置模块安装误差修正数据成功的应答(kCaliHull\_2Resp 命令字=81)

| ←帧长度→                             | ←命令字→                            | <b>←CRC-16</b> 校验 <b>→</b>        |  |
|-----------------------------------|----------------------------------|-----------------------------------|--|
| 0005                              | 51                               | B521                              |  |
| $\leftarrow$ UInt16 $\rightarrow$ | $\leftarrow$ UInt8 $\rightarrow$ | $\leftarrow$ UInt16 $\rightarrow$ |  |

54 清除模块安装误差修正数据(kClearHull 命令字=54)

| ←帧长度→                             | ←命令字→                            | <b>←CRC-16</b> 校验 <b>→</b>        |  |
|-----------------------------------|----------------------------------|-----------------------------------|--|
| 0005                              | 36                               | A960                              |  |
| $\leftarrow$ UInt16 $\rightarrow$ | $\leftarrow$ UInt8 $\rightarrow$ | $\leftarrow$ UInt16 $\rightarrow$ |  |

55 清除模块安装误差修正数据成功的应答(kClearHullResp 命令字=55)

| ←帧长度→      | ←命令字→                            | <b>←CRC-16</b> 校验→                |  |
|------------|----------------------------------|-----------------------------------|--|
| 0005       | 37                               | B941                              |  |
| ← UInt16 → | $\leftarrow$ UInt8 $\rightarrow$ | $\leftarrow$ UInt16 $\rightarrow$ |  |

64 开始加速度对齐校准(KStartCalAlignment 命令字=64)

| ←帧长度→                             | ←命令字→                            | <b>←CRC-16</b> 校验→                |  |
|-----------------------------------|----------------------------------|-----------------------------------|--|
| 0005                              | 40                               | B731                              |  |
| $\leftarrow$ UInt16 $\rightarrow$ | $\leftarrow$ UInt8 $\rightarrow$ | $\leftarrow$ UInt16 $\rightarrow$ |  |

65 开始加速度对齐校准成功的应答(KStartCalAlignmentResp 命令字=65)

| ←帧长度→                             | ←命令字→                            | <b>←CRC-16</b> 校验→                |
|-----------------------------------|----------------------------------|-----------------------------------|
| 0005                              | 41                               | A710                              |
| $\leftarrow$ UInt16 $\rightarrow$ | $\leftarrow$ UInt8 $\rightarrow$ | $\leftarrow$ UInt16 $\rightarrow$ |

66 记录加速度对齐校准数据(kTakeUserCalAlignmentSample 命令字=66)

| $\leftarrow$ | 数据    | $\rightarrow$  |
|--------------|-------|----------------|
| 采材           | 羊位置代  | 码              |
| ÷            | UInt8 | ${\leftarrow}$ |

采样位置代码与采样位置描述对应关系见下表。

| 采样位置代码 | 采样位置描述 |  |  |
|--------|--------|--|--|
| 0      | 对齐位置丨  |  |  |
| 1      | 对齐位置Ⅱ  |  |  |
| 2      | 对齐位置Ⅲ  |  |  |
| 3      | 对齐位置 1 |  |  |
| 4      | 对齐位置 2 |  |  |
| 5      | 对齐位置 3 |  |  |
| 6      | 对齐位置 4 |  |  |
| 7      | 对齐位置 5 |  |  |
| 8      | 对齐位置 6 |  |  |

表 7-3-4

举例: 00 06 42 00 D9 0E(水平面加速度对齐校准位置 [)

67 记录加速度对齐校准数据成功的应答(kTakeSampleOk 命令字=67)

| ←帧长度→                             | ←命令字→                            | <b>←CRC-16</b> 校验→                |  |  |
|-----------------------------------|----------------------------------|-----------------------------------|--|--|
| 0005                              | 43                               | 8752                              |  |  |
| $\leftarrow$ UInt16 $\rightarrow$ | $\leftarrow$ UInt8 $\rightarrow$ | $\leftarrow$ UInt16 $\rightarrow$ |  |  |

68 记录加速度对齐校准数据失败的应答(kTakeSampleFail 命令字=68)

| ←帧长度→      | ←命令字→                            | <b>←CRC-16</b> 校验→                |  |  |
|------------|----------------------------------|-----------------------------------|--|--|
| 0005       | 44                               | F7B5                              |  |  |
| ← UInt16 → | $\leftarrow$ UInt8 $\rightarrow$ | $\leftarrow$ UInt16 $\rightarrow$ |  |  |

69 计算加速度对齐校准系数(kCalcCoeff 命令字=69)

| ←帧长度→                             | ←命令字→                            | <b>←CRC-16</b> 校验→                |  |
|-----------------------------------|----------------------------------|-----------------------------------|--|
| 0005                              | 45                               | E794                              |  |
| $\leftarrow$ UInt16 $\rightarrow$ | $\leftarrow$ UInt8 $\rightarrow$ | $\leftarrow$ UInt16 $\rightarrow$ |  |

70 计算加速度对齐校准系数成功的应答(kCalcCoeffOk 命令字=70)

| ←帧长度→                             | ←命令字→                            | → ←CRC-16 校验→                     |  |
|-----------------------------------|----------------------------------|-----------------------------------|--|
| 0005                              | 46                               | D7F7                              |  |
| $\leftarrow$ UInt16 $\rightarrow$ | $\leftarrow$ UInt8 $\rightarrow$ | $\leftarrow$ UInt16 $\rightarrow$ |  |

71 计算加速度对齐校准系数失败的应答(kCalcCoeffFail 命令字=71)

| ←帧长度→                             | ←命令字→ ←CRC-16 校验                 |                                   |
|-----------------------------------|----------------------------------|-----------------------------------|
| 0005                              | 47                               | C7D6                              |
| $\leftarrow$ UInt16 $\rightarrow$ | $\leftarrow$ UInt8 $\rightarrow$ | $\leftarrow$ UInt16 $\rightarrow$ |

72 终止加速度对齐校准(KStopCalAlignment 命令字=72)

| ←帧长度→                             | ←命令字→                            | <b>←CRC-16</b> 校验→                |
|-----------------------------------|----------------------------------|-----------------------------------|
| 0005                              | 48                               | 3639                              |
| $\leftarrow$ UInt16 $\rightarrow$ | $\leftarrow$ UInt8 $\rightarrow$ | $\leftarrow$ UInt16 $\rightarrow$ |

73 终止加速度对齐校准成功的应答(KStopCalAlignmentResp 命令字=73)

| ←帧长度→                             | ←命令字→                            | <b>←CRC-16</b> 校验→                |  |  |
|-----------------------------------|----------------------------------|-----------------------------------|--|--|
| 0005                              | 49                               | 2618                              |  |  |
| $\leftarrow$ UInt16 $\rightarrow$ | $\leftarrow$ UInt8 $\rightarrow$ | $\leftarrow$ UInt16 $\rightarrow$ |  |  |

74 清除加速度对齐系数(KClearCalAlignmentCoeff 命令字=74)

| ←帧长度→                             | ←命令字→                            | <b>←CRC-16</b> 校验→                |  |
|-----------------------------------|----------------------------------|-----------------------------------|--|
| 0005                              | 4A                               | 167B                              |  |
| $\leftarrow$ UInt16 $\rightarrow$ | $\leftarrow$ UInt8 $\rightarrow$ | $\leftarrow$ UInt16 $\rightarrow$ |  |

75 清除加速度对齐系数成功的应答(KClearCalAlignmentCoeffResp 命令字=75)

| ←帧长度→                             | ←命令字→                            | <b>←CRC-16</b> 校验→                |  |
|-----------------------------------|----------------------------------|-----------------------------------|--|
| 0005                              | 4B                               | 065A                              |  |
| $\leftarrow$ UInt16 $\rightarrow$ | $\leftarrow$ UInt8 $\rightarrow$ | $\leftarrow$ UInt16 $\rightarrow$ |  |

## 6.4 CRC-16 校验

CRC-16 校验函数:

UInt16 CRC(void \* data, UInt32 len)



```
{
UInt8 * dataPtr = (UInt8 *)data;
UInt32 index = 0;
// Update the CRC for transmitted and received data using
// the CCITT 16bit algorithm (X^16 + X^12 + X^5 + 1).
UInt16 crc = 0;
while(len--)
{
    crc = (unsigned char)(crc >> 8) | (crc << 8);
    crc ^= (dataPtr[index++];
    crc ^= (unsigned char)(crc & 0xff) >> 4;
    crc ^= (crc << 8) << 4;
    crc ^= ((crc & 0xff) << 4) << 1;
}
return crc;</pre>
```

### }

# 7 校准

推荐校准顺序是加速度球校准→加速度对齐校准。

注意事项:

- (1) 手动采样。
- (2) 记录采样数据时传感器保持静止状态。
- (3) 校准完成后要保存校准结果。
- (4) 如果点击软件按键未响应,重复点击即可。
- (5) 如遇软件卡顿,重新连接串口。

### 7.1 加速度球校准

(1) 在"配置"页面按照图 7-1-1 所示配置,点击"配置并保存"按钮保存。保存成功后界面显示:设置完成。

| XPN AT304-XB(MB/T)                                                                                                                | 用户软件 V1.0                                                 |                                                                                                           |                                                    |                                                |                                                                                                |      |
|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------|------|
| XPN                                                                                                                               | 设备类型: AT30<br>固件版本号: 1208<br>序列号: 220815002<br>FCA版本: R04 |                                                                                                           |                                                    | 4□<br>₹                                        |                                                                                                |      |
| 连接 💦 🤇                                                                                                                            | 配置                                                        | 校准                                                                                                        | 测试                                                 | 零偏修正                                           | 数据记录                                                                                           | 系统日志 |
| 安装方式     STD 0°       安装方式     STD 0°       大小滿设置        ○大溝     ○小沙       輸出単位        ○度     ○密(       校生輸出過度        ○輸出     ○不利 | ↓                                                         | <ul> <li>進波设置</li> <li>進波抽头</li> <li>輸出设置</li> <li>・ 查询</li> <li>査询同</li> <li>采样间</li> <li>輸出间</li> </ul> | <sub>数</sub> D 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 | 校准していたので、「「「「「」」の「「」」の「「」」の「「」」の「「」」の「「」」の「「」」 | 设置<br>自动采择<br>体占数<br>加速度球校准<br>加速度对齐校准<br>设置<br>度系数编号 [0<br>值<br>直动采择<br>度系数编号 [0<br>值<br>面配置值 | ▶ 18 |

图 7-1-1

(2) 切换至"校准"页面。

(3) 点击"开始校准"按钮开始校准,见图 7-1-2。成功后按钮下方会显示数字 1,表示 将要采集第 1 个校准数据。

| 设备类型: AT30<br>因件版本号: 1208<br>序列号: 220815002<br>FCA版本: R04     | 关闭串口<br>休眠                                    |         |
|---------------------------------------------------------------|-----------------------------------------------|---------|
| 道接 配置 <b>技</b> 准                                              | 则试 零偏修正 数据                                    | 记录 系统日志 |
| - 校進过程                                                        | ┌ 校准结果评分 ———————————————————————————————————— | 保存      |
| 记录采样点                                                         | ─ 采样设置<br>○ 自动采样 采样点数:                        | 18      |
| <ul> <li>−校准设置</li> <li>○ 加速度球校准</li> <li>○ 加速度球校准</li> </ul> | 協仰角 橫滾角<br>000.0 恢复加速度出厂配置 保存                 |         |

图 7-1-2

(4) 按照表 7-1-1 中位置 1 的描述将传感器摆放好(摆放位置时可同时查看校准界面的采样设置框显示的值,位置接近即可。),并保持静止状态,然后点击"记录采样点"按钮,记录成功后按钮下方的数字变为 2,直到数字变成 18 后,点击"记录采样点"按钮结束采样。

软件自动开始计算校准系数,传感器指示灯停止闪烁。



图 7-1-3

| 姿态<br>位置 | 姿态描述                         |
|----------|------------------------------|
| 1        | 传感器的边1朝下,侧立                  |
| 2        | 传感器的边2朝下,侧立                  |
| 3        | 传感器的边3朝下,侧立                  |
| 4        | 传感器的边4朝下,侧立                  |
| 5        | 传感器平放                        |
| 6        | 传感器倒扣后平放                     |
| 7        | A角朝下侧立, 左右倾斜 45 度, 前后倾斜 0 度  |
| 8        | A角朝下侧立, 左右倾斜 45 度, 向前倾斜 45 度 |
| 9        | A角朝下侧立, 左右倾斜 45 度, 向后倾斜 45 度 |
| 10       | B角朝下侧立,左右倾斜45度,前后倾斜0度        |
| 11       | B角朝下侧立,左右倾斜45度,向前倾斜45度       |
| 12       | B角朝下侧立,左右倾斜45度,向后倾斜45度       |
| 13       | C角朝下侧立,左右倾斜45度,前后倾斜0度        |
| 14       | C角朝下侧立,左右倾斜45度,向前倾斜45度       |
| 15       | C角朝下侧立,左右倾斜45度,向后倾斜45度       |
| 16       | D角朝下侧立,左右倾斜45度,前后倾斜0度        |
| 17       | D角朝下侧立, 左右倾斜 45度, 向前倾斜 45度   |
| 18       | D角朝下侧立,左右倾斜 45 度,向后倾斜 45 度   |

表 7-1-1

(5) 校准系数计算完成后会在"校准结果评分"栏里显示评分,这个值越小越好。界面 如图 7-1-4。指示灯恢复闪烁。

#### CAT304 系列倾角传感器

| 谢 XPN AT304-XB(MB/1 | [)用户软件 V1.0                                               |                                               |
|---------------------|-----------------------------------------------------------|-----------------------------------------------|
| XPN                 | 设备类型: AT30<br>固件版本号: 1208<br>序列号: 220815002<br>PCA版本: R04 | ◆ 关闭串口 休眠                                     |
| 连接                  | 配置 校准                                                     | 测试 零偏修正 数据记录 系统日志                             |
| ┌ 校准过程———           | <sup>开始校准</sup><br>18<br>记录采样点                            | -校崔结果评分<br>加速度得分: 2.09<br>保存<br>-采祥设置         |
|                     |                                                           | ○ 自动采样 采样点数:18                                |
| ☞ 加速度球校准            | ○ 加速度对齐校准                                                 | ##7#/## 個地次用<br>-33.20 146.07<br>恢复加速度出厂配置 保存 |

图 7-1-4

(6) 点击"保存"按钮,数据会保存在传感器中。

### 7.2 加速度对齐校准

加速度对齐数据记录为非水平面记录数据,步骤如下:

(1) 在"配置"页面按照图 7-2-1 所示配置,点击"配置并保存"按钮,保存成功后 界面显示:设置完成。

| XPN AT304-XB(MB/T)用户软件 V1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        | -                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 设备类型: AT30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 😑 🛛 关闭串口                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                      |                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 序列号: 22081500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 02 休眠                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| PCA版本: RO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 连接 配置                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 校准 测试                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 零偏修正                                   | 数据记录                                                                              | 系统日志                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 安装方式     STD 0°     ▼       大小端设置     ・     ・       ・     大端     ○       小端     ・     ・       輸出単位     ・     ・       ・     度     ○       ・     度     ○       ・     を     ・       ・     ・     ・       ・     ・     ・       ・     ・     ・       ・     ・     ・       ・     ・     ・       ・     ・     ・       ・     ・     ・       ・     ・     ・       ・     ・     ・       ・     ・     ・       ・     ・     ・       ・     ・     ・       ・     ・     ・       ・     ・     ・       ・     ・     ・       ・     ・     ・       ・     ・     ・       ・     ・     ・       ・     ・     ・       ・     ・     ・       ・     ・     ・       ・     ・     ・       ・     ・     ・       ・     ・     ・       ・     ・     ・       ・     ・ | 求波曲头数 0   ▼   输出设置   ①   □   ②   □   ③ ① □   ③ ② □   ③ ② □   ③ □ □   ③ □ □   ③ □ □   ③ □ □   ③ □ □   ③ □ □   ③ □ □   ⑤ □ □   ⑤ □ □   ⑤ □ □   ⑤ □ □   ⑤ □ □   ⑤ □ □   ⑤ □ □   ⑤ □ □   ⑤ □ □   ⑤ □ □   ⑤ □ □   ⑥ □ □   ⑧ □ □   ⑧ □ □   ⑧ □ □   ⑧ □ □   ⑥ □ □   ⑧ □ □   ⑧ □ □   ⑧ □ □   ⑧ □ □   ⑧ □ □   ⑧ □ □   ⑧ □   ⑧ □   ⑧ □   ⑧ □   ⑧ □   ⑧ □   ⑧ □   ⑧ □   ⑧ □   ⑧ □   ⑧ □   ⑧ □   ⑧ □   ⑧ □   ⑧ □   ⑧ □   ⑧ □   ⑧ □   ⑧ □   ⑧ □   ⑧ □   ⑧ □   ⑧ □   ⑧ □   ⑧ □   ⑧ □   ⑧ □   ⑧ □   ⑧ □   ⑧ □   ⑧ □   ⑧ □   ⑧ □   ⑧ □   ⑧ □   ⑨ □   ⑧ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □   ⑨ □ <p< th=""><th>采林<br/>全<br/>一<br/>系数<br/>加速<br/>登込/<br/>设置完</th><th>自动采祥<br/>车点数 <sup>18</sup><br/>加速度对齐校准<br/>边置<br/>度系数编号 0<br/>直<br/><u>查</u>词配置值<br/>三成</th><th>✓ ✓ ✓ ✓ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■</th></p<> | 采林<br>全<br>一<br>系数<br>加速<br>登込/<br>设置完 | 自动采祥<br>车点数 <sup>18</sup><br>加速度对齐校准<br>边置<br>度系数编号 0<br>直<br><u>查</u> 词配置值<br>三成 | ✓ ✓ ✓ ✓ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ |

图 7-2-1

(2) 切换至"校准"页面,界面如图 7-2-2 所示。

#### CAT304 系列倾角传感器

| WIN AT304-XB(MB)       | T)用户软件 V1.0                     |                |               |      |
|------------------------|---------------------------------|----------------|---------------|------|
|                        | 设备类型: AT30                      | 😑 🛛 关闭串口       |               |      |
| XPN                    | 固件版本号: 1208<br>度列号: 220815002   | 体服             |               |      |
|                        | 序列马.220013002<br>PCA版本: RD4     | - Plank        |               |      |
| 连接                     | 配置 校准                           | 测试 零偏修正        | 数据记录          | 系统日志 |
| ┌记录水平面数据               |                                 | □核准结果评分        |               |      |
| 对齐位置I                  | 对齐位置 对齐位置                       | <u>EIII</u>    |               |      |
| 记录非水平平面数               | R                               |                |               |      |
| 对齐位置1                  | 对齐位置3 对齐位                       | 5              |               |      |
| 对齐位置2                  | 对齐位置4 对齐位                       | 置6             |               | 保存   |
| TT-44-74-72-10-10 21/2 | 874-0- T # 49.1-74-0-14 T #80-7 |                |               |      |
| 77.80X9.97-132/8E 1714 | 科州介希望 经正对介预准 清林》                | □介赤額<br>○ 自动采样 | 采样点数:18       |      |
| ─ 校准设置                 |                                 | 俯仰角<br>-33.20  | 橫滚角<br>146.07 |      |
| ○ 加速度球校准               | ☞ 加速度对齐校准                       | 恢复加速度出厂配置      | 保存            |      |

图 7-2-2

(3) 点击"开始对齐校准"按钮开始加速度对齐校准,成功后校准结果评分栏提示如图 7-2-3。

| 一校准结果评分<br>开始加速度对齐校<br>准成功 |    |
|----------------------------|----|
|                            | 保存 |

图 7-2-3

(4) 按照下表 7-2-1 的姿态描述,将传感器摆放在对齐位置 1,保持姿态静止,点击"记录非水平平面数据"栏里的"对齐位置 1"按钮。按照此方法记录剩余的采样位置数据。记录成功与失败都有对应的提示,见图 7-2-4。

| - 校准結果评分<br>采集成功 |    | 一校准结果评分 |    |
|------------------|----|---------|----|
|                  | 保存 |         | 保存 |

图 7-2-4



非水平平面加速度对齐校准采样位置(方位定义见图 5-2-5):

| 位置     | 姿态描述                          |  |  |
|--------|-------------------------------|--|--|
| 对齐位置 1 | 将传感器放置在水平面,使加速度 x 轴朝上/朝下, y、z |  |  |
|        | 轴平行于水平面                       |  |  |
| 对齐位置2  | 在位置1的基础上绕 x 轴旋转 180°          |  |  |
| 对齐位置3  | 将传感器放置在水平面,使加速度y轴朝上/朝下,x、z    |  |  |
|        | 轴平行于水平面                       |  |  |
| 对齐位置4  | 在位置 3 的基础上绕 y 轴旋转 180°        |  |  |
| 对齐位置5  | 将传感器放置在水平面,使加速度 z 轴朝上/朝下, x、y |  |  |
|        | 轴平行于水平面                       |  |  |
| 对齐位置6  | 在位置 5 的基础上绕 z 轴旋转 180°        |  |  |

表 7-2-1

(5) 点击"计算对齐系数"按钮,计算完成后,校准结果评分栏显示计算完成,如图 7-2-6 所示。



图 7-2-6

(6) 点击"保存"按钮,数据保存在传感器中。

非水平面采集数据时,如果条件受限,至少采集一个面绕垂直轴旋转的两个数据。

# 8 机械尺寸

#### CAT304-XB:

单位:mm

单位: mm



图 8-1-1

CAT304-MB:

图 8-1-2

CAT304-T:

单位: mm



**27 / 29** 北京信普尼科技有限公司 <u>www.xpnrobot.com</u> 010-80707547

# 9 型号选择

# 9.1 产品型号(即 PN 码)含义



9.2 选型范围

| 型号        | 接口    | 工作电压(DC)                  | 描述               |  |
|-----------|-------|---------------------------|------------------|--|
| CAT304-MB | RS232 | 2.0 列 451/ 中期长日十 25*42-00 |                  |  |
|           | TTL   | 3.8 到 150                 | 电路恢八寸 35*43mm;   |  |
| CAT304-XB | RS232 | - 3.8 到 15V               | 由败拒日十 21 * 22 mm |  |
|           | TTL   |                           | 电略恢八寸 31 33mm;   |  |
| CAT304-T  | RS232 | - 3.8 到 15V               | 由败拒日十 17*40mm    |  |
|           | TTL   |                           | 电邱伮八寸 17 40mm;   |  |

表 9-2-1

以上型号均为标准产品,如有特殊需求,可致电010-80707547,询问技术支持。